Gemini 3.0 challenge: Stop building things that walk and start building things to fly. The solution is Neuro-Symbolic AI. The codebase from rigid-body drones to articulated robot dogs usually implies a rewrite.Gemini 3.0 challenge: Stop building things that walk and start building things to fly. The solution is Neuro-Symbolic AI. The codebase from rigid-body drones to articulated robot dogs usually implies a rewrite.

From Drones to Robot Dogs: How I Refactored a Manufacturing Engine in 88k Tokens

2025/12/02 12:45

\ Recently, as part of my Gemini 3.0 challenge, I completed the OpenForge Neuro-Symbolic Manufacturing Engine. The system successfully designed, sourced, and simulated custom drones. But I wanted to push the model further. I wanted to see if the architecture was brittle (overfit to drones) or robust (capable of general engineering).

So, I gave the system a new directive: Stop building things that fly. Start building things that walk.

Incredibly, within just 88,816 tokens of context and code generation, the system pivoted. It stopped looking for Kv ratings and propellers and started calculating servo torque and inverse kinematics.

Here is how I used Gemini not as a Source of Truth, but as a logic translator to engineer the Ranch Dog.

The Fatal Flaw: The LLM as a Database

In my previous article I discussed the fatal flaw in most AI engineering projects: treating the Large Language Model (LLM) as a database of facts. If you ask an LLM, Design me a drone, it hallucinates. It suggests parts that don't fit, batteries that are too heavy, or motors that don't exist.

The solution is Neuro-Symbolic AI.

  • Neural (The LLM): Used for Translation. It translates user intent: I need a robot to carry feed bags into mathematical constraints (Payload > 10kg).
  • Symbolic (The Code): Used for Truth. Python scripts calculate the physics, verify the voltage compatibility, and generate the CAD files.

The LLM never calculates. It only configures the calculator.

The Pivot: From Aerodynamics to Kinematics

Refactoring a codebase from rigid-body drones to articulated robot dogs usually implies a rewrite. However, because of the Neuro-Symbolic architecture, the skeleton of the code remained the same. I only had to swap the organs.

Here is how the architecture handled the pivot:

1. The Brain Transplant (Prompts)

The first step was retraining the agents via prompts. I didn't change the Python service that runs the logic; I just changed the instructions Gemini uses to select the logic.

I updated prompts.py to remove aerodynamic axioms and replace them with kinematic ones. The system immediately stopped caring about Hover Throttle and started optimizing for Stall Torque:

# app/prompts.py REQUIREMENTS_SYSTEM_INSTRUCTION = """ You are the "Chief Robotics Engineer". Translate user requests into QUADRUPED TOPOLOGY. KNOWLEDGE BASE (AXIOMS): - "Heavy Haul" / "Mule": Requires High-Torque Serial Bus Servos (30kg+), shorter femurs. - "Fence Inspector": Requires High-Endurance, Lidar/Camera mast. - "Swamp/Mud": Requires sealed actuators (IP-rated), wide footpads. OUTPUT SCHEMA (JSON ONLY): { "topology": { "class": "String (e.g., Heavy Spot-Clone)", "target_payload_kg": "Float", "leg_dof": "Integer (usually 3 per leg)" }, "technical_constraints": { "actuator_type": "String (e.g., Serial Bus Servo)", "min_torque_kgcm": "Float", "chassis_material": "String" } } """

2. The Sourcing Pivot (Data Ingestion)

This was the most critical test. The system's Fusion Service scrapes the web for real parts. The scraper remained untouched, but I updated the Library Service to identify servos instead of brushless motors.

Instead of regex matching for Kv ratings, library_service.py now identifies whether a servo is a cheap toy (PWM) or a robotics-grade component (Serial Bus): \n

# app/services/library_service.py STANDARD_SERVO_PATTERNS = { # Micro / Hobby (PWM) "SG90": {"torque": 1.6, "type": "PWM", "class": "Micro"}, # Robotics Serial Bus (The good stuff) "LX-16A": {"torque": 17.0, "type": "Serial", "class": "Standard"}, "XM430": {"torque": 40.0, "type": "Dynamixel", "class": "Standard"}, } def infer_actuator_specs(product_title: str) -> dict: # Logic to infer torque if the Vision AI misses it if "est_torque_kgcm" not in specs: match = re.search(r"\b(\d{1,3}(?:\.\d)?)\s?(?:kg|kg\.cm)\b", title_lower) if match: specs["est_torque_kgcm"] = float(match.group(1)) return specs

3. The Physics Pivot (Validation)

In the drone build, physics_service.py calculated Thrust-to-Weight ratios. For the robot dog, Gemini rewrote this service to calculate Static Torque Requirements. It uses lever-arm physics to ensure the servos selected by the Sourcing Agent can actually lift the robot.

# app/services/physics_service.py def _calculate_torque_requirements(total_mass_kg, femur_length_mm): """ Calculates the minimum torque required to stand/trot. Torque = Force * Distance. """ # Force per leg (2 legs supporting body in trot gait) force_newtons = (total_mass_kg * GRAVITY) / 2.0 # Distance = Horizontal projection of the Femur lever_arm_cm = femur_length_mm / 10.0 required_torque_kgcm = (total_mass_kg / 2.0) * lever_arm_cm return required_torque_kgcm

4. The Simulation Pivot (Isaac Sim)

In NVIDIA Isaac Sim, a drone is a simple Rigid Body. A Quadruped is an Articulation Tree of parents and children connected by joints.

I tasked Gemini with rewriting isaac_service.py. It successfully swapped RigidPrimView for ArticulationView and implemented stiffness damping to simulate servo holding strength:

# app/services/isaac_service.py def generate_robot_usd(self, robot_data): # CRITICAL: Apply Articulation Root API # This tells Isaac Sim "Treat everything below this as a system of joints" UsdPhysics.ArticulationRootAPI.Apply(root_prim.GetPrim()) # Define The Joint (Revolute) representing the Servo self._add_revolute_joint( stage, parent_path=chassis_path, child_path=femur_path, axis="y", # Rotates around Y axis (swing) stiffness=10000.0 # High stiffness = Strong Servo )

5. The Locomotion Pivot (Inverse Kinematics)

Drones rely on PID controllers to stay level. Dogs require Inverse Kinematics (IK) to figure out how to move a foot to coordinates 

(x,y,z)(x,y,z)

Gemini generated a new 2-DOF planar IK solver (ik_service.py) that uses the Law of Cosines to calculate the exact angle the hip and knee servos need to hold to keep the robot standing.

# app/services/ik_service.py def solve_2dof(self, target_x, target_z): # Law of Cosines to find knee angle cos_knee = (self.l1**2 + self.l2**2 - r**2) / (2 * self.l1 * self.l2) alpha_knee = math.acos(cos_knee) # Calculate servo angle knee_angle = -(math.pi - alpha_knee) return hip_angle, knee_angle

The Result: 88,816 Tokens Later

The resulting system, OpenForge, is now a dual-threat engine. It can take a persona-based request: I am a rancher and I need a robot to patrol my fence line" and autonomously:

  1. Architect a high-endurance quadruped topology.
  2. Source real Lidar modules and long-range servos from the web.
  3. Validate that the battery voltage matches the servos (preventing magic smoke).
  4. Generate the CAD files for the chassis and legs.
  5. Simulate the robot walking in a physics-accurate environment.

This pivot wasn't about the robot. It was about the Agility of Neuro-Symbolic Architectures as well as Gemini 3.0. By decoupling the Reasoning (LLM) from the Execution (Code), you can refactor complex systems at the speed of thought.

\ This article is part of my ongoing Gemini 3.0 challenge to push the boundaries of automated engineering.

\

Piyasa Fırsatı
DOGS Logosu
DOGS Fiyatı(DOGS)
$0,00004397
$0,00004397$0,00004397
-1,43%
USD
DOGS (DOGS) Canlı Fiyat Grafiği
Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen service@support.mexc.com ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

The Channel Factories We’ve Been Waiting For

The Channel Factories We’ve Been Waiting For

The post The Channel Factories We’ve Been Waiting For appeared on BitcoinEthereumNews.com. Visions of future technology are often prescient about the broad strokes while flubbing the details. The tablets in “2001: A Space Odyssey” do indeed look like iPads, but you never see the astronauts paying for subscriptions or wasting hours on Candy Crush.  Channel factories are one vision that arose early in the history of the Lightning Network to address some challenges that Lightning has faced from the beginning. Despite having grown to become Bitcoin’s most successful layer-2 scaling solution, with instant and low-fee payments, Lightning’s scale is limited by its reliance on payment channels. Although Lightning shifts most transactions off-chain, each payment channel still requires an on-chain transaction to open and (usually) another to close. As adoption grows, pressure on the blockchain grows with it. The need for a more scalable approach to managing channels is clear. Channel factories were supposed to meet this need, but where are they? In 2025, subnetworks are emerging that revive the impetus of channel factories with some new details that vastly increase their potential. They are natively interoperable with Lightning and achieve greater scale by allowing a group of participants to open a shared multisig UTXO and create multiple bilateral channels, which reduces the number of on-chain transactions and improves capital efficiency. Achieving greater scale by reducing complexity, Ark and Spark perform the same function as traditional channel factories with new designs and additional capabilities based on shared UTXOs.  Channel Factories 101 Channel factories have been around since the inception of Lightning. A factory is a multiparty contract where multiple users (not just two, as in a Dryja-Poon channel) cooperatively lock funds in a single multisig UTXO. They can open, close and update channels off-chain without updating the blockchain for each operation. Only when participants leave or the factory dissolves is an on-chain transaction…
Paylaş
BitcoinEthereumNews2025/09/18 00:09
XRP ETF’s bereiken belangrijke mijlpaal: $1 miljard aan netto instroom

XRP ETF’s bereiken belangrijke mijlpaal: $1 miljard aan netto instroom

De markt voor crypto-exchange-traded funds (ETF’s) heeft opnieuw een belangrijke mijlpaal bereikt. XRP ETF’s hebben gezamenlijk meer dan 1 miljard dollar aan netto
Paylaş
Coinstats2025/12/16 21:01
XSGD And XUSD Launch On Solana’s Blazing Network In 2025

XSGD And XUSD Launch On Solana’s Blazing Network In 2025

The post XSGD And XUSD Launch On Solana’s Blazing Network In 2025 appeared on BitcoinEthereumNews.com. StraitsX Stablecoins Unleash Power: XSGD And XUSD Launch
Paylaş
BitcoinEthereumNews2025/12/16 20:59