Acknowledging the collaborators from SLAC National Accelerator Laboratory and the University of Chicago for discussions and technical contributions, particularly with differentiable kernel density estimation.Acknowledging the collaborators from SLAC National Accelerator Laboratory and the University of Chicago for discussions and technical contributions, particularly with differentiable kernel density estimation.

Collaborative Research in Accelerator Physics: Acknowledgments and DOE Funding

2025/10/08 23:30

I. Introduction

II. Maximum Entropy Tomography

  • A. Ment
  • B. Ment-Flow

III. Numerical Experiments

  • A. 2D reconstructions from 1D projections
  • B. 6D reconstructions from 1D projections

IV. Conclusion and Extensions

V. Acknowledgments and References

V. ACKNOWLEDGEMENTS

We are grateful to Ryan Roussel (SLAC National Accelerator Laboratory), Juan Pablo Gonzalez-Aguilera (University of Chicago), and Auralee Edelen (SLAC National Accelerator Laboratory) for discussions that seeded the idea for this work and for sharing their differentiable kernel density estimation code.

\ This manuscript has been authored by UT Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

\


[1] B. Cathey, S. Cousineau, A. Aleksandrov, and A. Zhukov, First six-dimensional phase space measurement of an accelerator beam, Phys. Rev. Lett. 121, 064804 (2018).

\ [2] K. Ruisard, A. Aleksandrov, S. Cousineau, V. Tzoganis, and A. Zhukov, High dimensional characterization of the longitudinal phase space formed in a radio frequency quadrupole, Phys. Rev. Accel. Beams 23, 124201 (2020).

\ [3] A. Hoover, K. Ruisard, A. Aleksandrov, A. Zhukov, and S. Cousineau, Analysis of a hadron beam in fivedimensional phase space, Phys. Rev. Accel. Beams 26, 064202 (2023).

\ [4] Y. Liu, C. Long, and A. Aleksandrov, Nonintrusive measurement of time-resolved emittances of 1-gev operational hydrogen ion beam using a laser comb, Phys. Rev. Accel. Beams 23, 102806 (2020).

\ [5] A. Wolski, D. C. Christie, B. L. Militsyn, D. J. Scott, and H. Kockelbergh, Transverse phase space characterization in an accelerator test facility, Phys. Rev. Accel. Beams 23, 032804 (2020).

\ [6] K. Hock and A. Wolski, Tomographic reconstruction of the full 4D transverse phase space, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 726, 8 (2013).

\ [7] M. Wang, Z. Wang, D. Wang, W. Liu, B. Wang, M. Wang, M. Qiu, X. Guan, X. Wang, W. Huang, and S. Zheng, Four-dimensional phase space measurement using multiple two-dimensional profiles, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 943, 162438 (2019).

\ [8] B. Marchetti, A. Grudiev, P. Craievich, R. Assmann, H.- H. Braun, N. Catalan Lasheras, F. Christie, R. D’Arcy, R. Fortunati, R. Ganter, et al., Experimental demonstration of novel beam characterization using a polarizable x-band transverse deflection structure, Scientific reports 11, 3560 (2021).

\ [9] A. Wolski, M. A. Johnson, M. King, B. L. Militsyn, and P. H. Williams, Transverse phase space tomography in an accelerator test facility using image compression and machine learning, Phys. Rev. Accel. Beams 25, 122803 (2022).

\ [10] R. Roussel, A. Edelen, C. Mayes, D. Ratner, J. P. Gonzalez-Aguilera, S. Kim, E. Wisniewski, and J. Power, Phase space reconstruction from accelerator beam measurements using neural networks and differentiable simulations, Physical Review Letters 130, 145001 (2023).

\ [11] A. Scheinker, F. Cropp, and D. Filippetto, Adaptive autoencoder latent space tuning for more robust machine learning beyond the training set for six-dimensional phase space diagnostics of a time-varying ultrafast electron-diffraction compact accelerator, Phys. Rev. E 107, 045302 (2023).

\ [12] S. Jaster-Merz, R. W. Assmann, R. Brinkmann, F. Burkart, W. Hillert, M. Stanitzki, and T. Vinatier, 5D tomographic phase-space reconstruction of particle bunches, Phys. Rev. Accel. Beams 27, 072801 (2024).

\ [13] R. Roussel, J. P. Gonzalez-Aguilera, A. Edelen, E. Wisniewski, A. Ody, W. Liu, Y.-K. Kim, and J. Power, Efficient 6-dimensional phase space reconstruction from experimental measurements using generative machine learning (2024).

\ [14] S. Press´e, K. Ghosh, J. Lee, and K. A. Dill, Principles of maximum entropy and maximum caliber in statistical physics, Rev. Mod. Phys. 85, 1115 (2013).

\ [15] J. Skilling and S. F. Gull, Bayesian maximum entropy image reconstruction, Lecture Notes-Monograph Series , 341 (1991).

\ [16] R. D. Rosenkrantz, ET Jaynes: Papers on probability, statistics and statistical physics, Vol. 158 (Springer Science & Business Media, 2012).

\ [17] A. Giffin, Maximum Entropy: The Universal Method for Inference, Ph.D. thesis, University at Albany, State University of New York, Albany, NY, USA (2008).

\ [18] G. Loaiza-Ganem, Y. Gao, and J. P. Cunningham, Maximum entropy flow networks, in International Conference on Learning Representations (2016).

\ [19] J. C. Wong, A. Shishlo, A. Aleksandrov, Y. Liu, and C. Long, 4D transverse phase space tomography of an operational hydrogen ion beam via noninvasive 2d measurements using laser wires, Physical Review Accelerators and Beams 25, 10.1103/PhysRevAccelBeams.25.042801 (2022).

\ [20] C. Mottershead, Maximum entropy tomography, in Proceedings of the Fifteenth International Workshop on Maximum Entropy and Bayesian Methods, Santa Fe, New Mexico, USA (Springer, 1996) pp. 425–430.

\ [21] G. Minerbo, MENT: A maximum entropy algorithm for reconstructing a source from projection data, Computer Graphics and Image Processing 10, 48 (1979).

\ [22] N. J. Dusaussoy and I. E. Abdou, The extended MENT algorithm: a maximum entropy type algorithm using prior knowledge for computerized tomography, IEEE Transactions on Signal Processing 39, 1164 (1991).

\ [23] A. Tran and Y. Hao, Beam tomography with coupling using maximum entropy technique, in Proc. 14th International Particle Accelerator Conference, 14 (JACoW Publishing, Geneva, Switzerland, 2023) pp. 3944–3947.

\ [24] S. Bond-Taylor, A. Leach, Y. Long, and C. G. Willcocks, Deep generative modelling: A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models, IEEE transactions on pattern analysis and machine intelligence 44, 7327 (2021).

\ [25] J. Kaiser, C. Xu, A. Eichler, and A. Santamaria Garcia, Bridging the gap between machine learning and particle accelerator physics with high-speed, differentiable simulations, Phys. Rev. Accel. Beams 27, 054601 (2024).

\ [26] Z. Ao and J. Li, Entropy estimation via normalizing flow, in Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36 (2022) pp. 9990–9998.

\ [27] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan, Normalizing flows for probabilistic modeling and inference, The Journal of Machine Learning Research 22, 2617 (2021).

\ [28] V. Stimper, B. Sch¨olkopf, and J. M. Hern´andez-Lobato, Resampling base distributions of normalizing flows, in Proceedings of the 25th International Conference on Artificial Intelligence and Statistics (AISTATS), Proceedings of Machine Learning Research, Vol. 151 (PMLR, 2022) pp. 4915–4936.

\ [29] G. M. Green, Y.-S. Ting, and H. Kamdar, Deep potential: Recovering the gravitational potential from a snapshot of phase space, The Astrophysical Journal 942, 26 (2023).

\ [30] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, Neural spline flows, Advances in neural information processing systems 32 (2019).

\ [31] G. Papamakarios, T. Pavlakou, and I. Murray, Masked autoregressive flow for density estimation, Advances in neural information processing systems 30 (2017).

\ [32] A. Hoover, MENT-Flow: maximum-entropy phase space tomography using normalizing flows, 10.5281/zenodo.11110801 (2024).

\ [33] A. Aleksandrov, S. Cousineau, and K. Ruisard, Understanding beam distributions in hadron linacs in the presence of space charge, Journal of Instrumentation 15 (7), P07025.

\ [34] M. Laszkiewicz, J. Lederer, and A. Fischer, Marginal tailadaptive normalizing flows, in Proceedings of the 39th International Conference on Machine Learning, Proceedings of Machine Learning Research, Vol. 162, edited by K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato (PMLR, 2022) pp. 12020–12048.

\ [35] S. Basir and I. Senocak, An adaptive augmented lagrangian method for training physics and equality constrained artificial neural networks, arXiv preprint arXiv:2306.04904 (2023).

\ [36] B. Dai and U. Seljak, Sliced iterative normalizing flows, in Proceedings of the 38th International Conference on Machine Learning, Proceedings of Machine Learning Research, Vol. 139, edited by M. Meila and T. Zhang (PMLR, 2021) pp. 2352–2364.

\ [37] B. Klartag, A central limit theorem for convex sets, Inventiones mathematicae 168, 91 (2007).

\ [38] J. Qiang, Differentiable self-consistent space-charge simulation for accelerator design, Phys. Rev. Accel. Beams 26, 024601 (2023).

\ [39] M. Mardani, J. Song, J. Kautz, and A. Vahdat, A variational perspective on solving inverse problems with diffusion models, arXiv preprint arXiv:2305.04391 (2023).

\

:::info Authors:

(1) Austin Hoover, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA (hooveram@ornl.gov);

(2) Jonathan C. Wong, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.
Share Insights

You May Also Like

Top Crypto Presales of 2025

Top Crypto Presales of 2025

The post Top Crypto Presales of 2025 appeared on BitcoinEthereumNews.com. Crypto News Discover the top crypto presales of 2025 with BlockDAG, Bitcoin Hyper, Snorter Token, and BlockchainFX leading innovation and market growth. The 2025 presale phase is reshaping how early-stage blockchain projects gain traction. As global interest rises, market participants are turning toward the top crypto presales that offer real technology, adoption potential, and structured growth. This wave introduces several promising names, such as Bitcoin Hyper (HYPER), Snorter Token (SNORT), and BlockchainFX (BFX), each contributing to a specific area of crypto from trading automation to financial integration. Yet, one name has outshone them all: BlockDAG (BDAG). Having raised over $434 million, BDAG continues to prove that reaching a $1 valuation is not just speculation but a calculated path forward. This lineup of top crypto presales showcases how innovation and structure define the projects poised to lead the next growth era. BlockDAG (BDAG): The Project Redefining Market Potential While many projects rely on hype, BlockDAG (BDAG) is building its reputation through data-backed performance, making it a leader among the top crypto presales of 2025. Currently in Batch 31 at $0.0015 per coin, BDAG has crossed $434 million in raised funds, sold 27.1B+ coins, and attracted a massive base of 312,000 holders and 3 million miners through its X1 mobile app. The confirmed launch price of $0.05 already implies a 3,233% ROI for early participants, though some analysts believe its potential goes much higher. If BDAG reaches $1, its estimated market cap would approach $27 billion, placing it within the top 20 rankings on CoinMarketCap, just below projects like Polygon and Avalanche. Its hybrid DAG and Proof-of-Work model, 1,400 TPS capability, and partnership with the BWT Alpine F1 Team make this projection appear grounded rather than speculative. Each presale batch continues to sell out quicker than the last, reflecting strong and growing…
Share
BitcoinEthereumNews2025/10/30 07:23
Fed Cuts Interest Rate Again – Will Crypto Rally Or Stall?

Fed Cuts Interest Rate Again – Will Crypto Rally Or Stall?

The post Fed Cuts Interest Rate Again – Will Crypto Rally Or Stall? appeared on BitcoinEthereumNews.com. The Federal Reserve lowered its benchmark interest rate by 25 basis points to 3.75–4.00% on Wednesday, marking its second rate cut this year. The central bank said economic growth remains moderate while job gains have slowed and unemployment has edged up. Inflation, however, remains “somewhat elevated,” keeping the Fed cautious about further policy easing. Sponsored Sponsored Fed Balances Inflation and Labor Market Risks The decision also confirmed that the Fed will end quantitative tightening on December 1, effectively pausing its balance sheet reduction earlier than expected. The statement highlighted growing downside risks to employment, a shift from prior meetings that focused mainly on inflation.  The Fed said it will assess future policy “based on incoming data” and the “balance of risks” to its dual mandate. Chair Jerome Powell and most committee members backed the move, while two dissented. Stephen Miran supported a deeper 50 bps cut, citing weaker job data.  Market Expectations For December Rate Cuts. Source: CME FedWatch Economic Context Available indicators show that growth continues at a moderate pace, but key labor measures are softening. The unemployment rate remains low, though the Fed acknowledged it has risen slightly since the summer. Sponsored Sponsored Inflation has picked up since early 2025, reinforcing concerns that prices could stay above the 2% target longer than expected. Futures markets now price a 70% chance of another 25 bps cut in December.  However, Powell is expected to stress a data-driven approach at the press conference. Outlook for Crypto Markets The policy shift may bolster risk appetite in the short term. Bitcoin and major altcoins often benefit when liquidity expands and bond yields fall. Major KOLs such as MicroStrategy’s Michael Saylor and Robert Kiosaki earlier predicted Bitcoin price to go beyond $150,000 by the end of 2025.  However, persistent inflation could limit broader enthusiasm.…
Share
BitcoinEthereumNews2025/10/30 07:31