This is the second article in my clean code series. You can read the first part here.
https://hackernoon.com/clean-code-functions-and-error-handling-in-go-from-chaos-to-clarity-part-1?embedable=true
I've seen hundreds of developers try to write Go like Java, creating inheritance hierarchies that don't exist and fighting the language every step of the way. "Go has no classes!" — the first shock for developers with Java/C# background. The second — "How to live without inheritance?!". Relax, Go offers something better: composition through embedding, interfaces without explicit implementation, and clear rules for methods.
Common struct/method mistakes I've observed:
After 6 years of working with Go, I can say: the difference between fighting the language and flowing with it usually comes down to understanding structs and methods properly.
This is question #1 in interviews and code reviews. Here's a simple rule that covers 90% of cases:
// Value receiver - for immutable methods func (u User) FullName() string { return fmt.Sprintf("%s %s", u.FirstName, u.LastName) } // Pointer receiver - when changing state func (u *User) SetEmail(email string) error { if !isValidEmail(email) { return ErrInvalidEmail } u.Email = email u.UpdatedAt = time.Now() return nil }
type Account struct { ID string Balance decimal.Decimal mutex sync.RWMutex } // Rule 1: If even one method requires a pointer receiver, // ALL methods should use pointer receiver (consistency) // BAD: mixed receivers func (a Account) GetBalance() decimal.Decimal { // value receiver return a.Balance } func (a *Account) Deposit(amount decimal.Decimal) { // pointer receiver a.Balance = a.Balance.Add(amount) } // GOOD: consistent receivers func (a *Account) GetBalance() decimal.Decimal { a.mutex.RLock() defer a.mutex.RUnlock() return a.Balance } func (a *Account) Deposit(amount decimal.Decimal) error { if amount.LessThanOrEqual(decimal.Zero) { return ErrInvalidAmount } a.mutex.Lock() defer a.mutex.Unlock() a.Balance = a.Balance.Add(amount) return nil }
// Struct with mutex ALWAYS pointer receiver type Cache struct { data map[string]interface{} mu sync.RWMutex } // DANGEROUS: value receiver copies mutex! func (c Cache) Get(key string) interface{} { // BUG! c.mu.RLock() // Locking a COPY of mutex defer c.mu.RUnlock() return c.data[key] } // CORRECT: pointer receiver func (c *Cache) Get(key string) interface{} { c.mu.RLock() defer c.mu.RUnlock() return c.data[key] }
Go doesn't have constructors in the classical sense, but there's the New* idiom:
// BAD: direct struct creation func main() { user := &User{ ID: generateID(), // What if we forget? Email: "test@test.com", // CreatedAt not set! } } // GOOD: factory function guarantees initialization func NewUser(email string) (*User, error) { if !isValidEmail(email) { return nil, ErrInvalidEmail } return &User{ ID: generateID(), Email: email, CreatedAt: time.Now(), UpdatedAt: time.Now(), }, nil }
For structs with many optional parameters:
type Server struct { host string port int timeout time.Duration maxConns int tls *tls.Config } // Option - function that modifies Server type Option func(*Server) // Factory functions for options func WithTimeout(timeout time.Duration) Option { return func(s *Server) { s.timeout = timeout } } func WithTLS(config *tls.Config) Option { return func(s *Server) { s.tls = config } } func WithMaxConnections(max int) Option { return func(s *Server) { s.maxConns = max } } // Constructor accepts required parameters and options func NewServer(host string, port int, opts ...Option) *Server { server := &Server{ host: host, port: port, timeout: 30 * time.Second, // defaults maxConns: 100, } // Apply options for _, opt := range opts { opt(server) } return server } // Usage - reads like prose server := NewServer("localhost", 8080, WithTimeout(60*time.Second), WithMaxConnections(1000), WithTLS(tlsConfig), )
Go has no private/public keywords. Instead — the case of the first letter:
type User struct { ID string // Public field (Exported) Email string password string // Private field (Unexported) createdAt time.Time // Private } // Public method func (u *User) SetPassword(pwd string) error { if len(pwd) < 8 { return ErrWeakPassword } hashed, err := bcrypt.GenerateFromPassword([]byte(pwd), bcrypt.DefaultCost) if err != nil { return fmt.Errorf("hash password: %w", err) } u.password = string(hashed) return nil } // Private helper func (u *User) validatePassword(pwd string) error { return bcrypt.CompareHashAndPassword([]byte(u.password), []byte(pwd)) } // Public method uses private one func (u *User) Authenticate(pwd string) error { if err := u.validatePassword(pwd); err != nil { return ErrInvalidCredentials } return nil }
Instead of inheritance, Go offers embedding. This is NOT inheritance, it's composition:
// Base struct type Person struct { FirstName string LastName string BirthDate time.Time } func (p Person) FullName() string { return fmt.Sprintf("%s %s", p.FirstName, p.LastName) } func (p Person) Age() int { return int(time.Since(p.BirthDate).Hours() / 24 / 365) } // Employee embeds Person type Employee struct { Person // Embedding - NOT inheritance! EmployeeID string Department string Salary decimal.Decimal } // Employee can override Person's methods func (e Employee) FullName() string { return fmt.Sprintf("%s (%s)", e.Person.FullName(), e.EmployeeID) } // Usage emp := Employee{ Person: Person{ FirstName: "John", LastName: "Doe", BirthDate: time.Date(1990, 1, 1, 0, 0, 0, 0, time.UTC), }, EmployeeID: "EMP001", Department: "Engineering", } fmt.Println(emp.FullName()) // John Doe (EMP001) - overridden method fmt.Println(emp.Age()) // 34 - method from Person fmt.Println(emp.FirstName) // John - field from Person
type Reader interface { Read([]byte) (int, error) } type Writer interface { Write([]byte) (int, error) } // ReadWriter embeds both interfaces type ReadWriter interface { Reader Writer } // Struct can embed interfaces for delegation type LoggedWriter struct { Writer // Embed interface logger *log.Logger } func (w LoggedWriter) Write(p []byte) (n int, err error) { n, err = w.Writer.Write(p) // Delegate to embedded Writer w.logger.Printf("Wrote %d bytes, err: %v", n, err) return n, err } // Usage var buf bytes.Buffer logged := LoggedWriter{ Writer: &buf, logger: log.New(os.Stdout, "WRITE: ", log.LstdFlags), } logged.Write([]byte("Hello, World!"))
type QueryBuilder struct { table string columns []string where []string orderBy string limit int } // Each method returns *QueryBuilder for chaining func NewQuery(table string) *QueryBuilder { return &QueryBuilder{ table: table, columns: []string{"*"}, } } func (q *QueryBuilder) Select(columns ...string) *QueryBuilder { q.columns = columns return q } func (q *QueryBuilder) Where(condition string) *QueryBuilder { q.where = append(q.where, condition) return q } func (q *QueryBuilder) OrderBy(column string) *QueryBuilder { q.orderBy = column return q } func (q *QueryBuilder) Limit(n int) *QueryBuilder { q.limit = n return q } func (q *QueryBuilder) Build() string { query := fmt.Sprintf("SELECT %s FROM %s", strings.Join(q.columns, ", "), q.table) if len(q.where) > 0 { query += " WHERE " + strings.Join(q.where, " AND ") } if q.orderBy != "" { query += " ORDER BY " + q.orderBy } if q.limit > 0 { query += fmt.Sprintf(" LIMIT %d", q.limit) } return query } // Usage - reads like SQL query := NewQuery("users"). Select("id", "name", "email"). Where("active = true"). Where("created_at > '2024-01-01'"). OrderBy("created_at DESC"). Limit(10). Build() // SELECT id, name, email FROM users WHERE active = true AND created_at > '2024-01-01' ORDER BY created_at DESC LIMIT 10
// BAD: race condition type Counter struct { value int } func (c *Counter) Inc() { c.value++ // Race when accessed concurrently! } // GOOD: protected with mutex type SafeCounter struct { mu sync.Mutex value int } func (c *SafeCounter) Inc() { c.mu.Lock() defer c.mu.Unlock() c.value++ } func (c *SafeCounter) Value() int { c.mu.Lock() defer c.mu.Unlock() return c.value } // EVEN BETTER: using atomic type AtomicCounter struct { value atomic.Int64 } func (c *AtomicCounter) Inc() { c.value.Add(1) } func (c *AtomicCounter) Value() int64 { return c.value.Load() }
// BAD: Java-style getters/setters type User struct { name string age int } func (u *User) GetName() string { return u.name } func (u *User) SetName(name string) { u.name = name } func (u *User) GetAge() int { return u.age } func (u *User) SetAge(age int) { u.age = age } // GOOD: export fields or use methods with logic type User struct { Name string age int // private because validation needed } func (u *User) SetAge(age int) error { if age < 0 || age > 150 { return ErrInvalidAge } u.age = age return nil } func (u *User) Age() int { return u.age }
// BAD: God Object type Application struct { Config Config Database *sql.DB Cache *redis.Client HTTPServer *http.Server GRPCServer *grpc.Server Logger *log.Logger Metrics *prometheus.Registry // ... 20 more fields } // GOOD: separation of concerns type App struct { config *Config services *Services servers *Servers } type Services struct { DB Database Cache Cache Auth Authenticator } type Servers struct { HTTP *HTTPServer GRPC *GRPCServer }
New* for complex initializationStructs and methods in Go are an exercise in simplicity. No classes? Great, less complexity. No inheritance? Perfect, the composition is clearer. The key is not to drag patterns from other languages but to use Go idioms.
In the next article, we'll dive into interfaces — the real magic of Go. We'll discuss why small interfaces are better than large ones, what interface satisfaction means, and why "Accept interfaces, return structs" is the golden rule.
How do you handle the transition from OOP languages to Go's composition model? What patterns helped you the most? Share your experience in the comments!


