記憶體價格飆漲,微軟Xbox Series X/S恐將面臨漲價?關鍵零組件成本上升,或影響Xbox主機供應。想入手的玩家動作要快,記憶體短缺可能導致斷貨危機!根據 YouTube 頻道《摩爾定律已死》(Moore’s Law is Dead)爆料,因應全球記憶體價格持續上漲,微軟可能再次調漲 Xbox Series X 與 S 主機的售價。消息指出,微軟內部已警告,關鍵零組件成本快速上升,恐影響未來供應與售價。 三星與 SK 協議推升 DRAM 價格,OpenAI 成關鍵推手 此次記憶體價格暴漲的關鍵在於,三星與 SK 海力士於 2025 年 10 月簽訂一項巨額供應協議,將大批 DRAM 提供給 OpenAI 用於 Stargate 資料中心。 根據報導,這項協議幾乎吃掉全球近 一半的 DRAM 產能,導致合約價格年增超過 170%。 對於沒有大量庫存的廠商來說,包括微軟在內,顯然都面臨供應鏈壓力。 微軟可能措手不及,漲價或缺貨成兩大風險 《摩爾定律已死》在影片中表示:「微軟完全沒提前規劃,如果你現在還想用原價買 Xbox,可能得趁早,因為不只是漲價,連供貨都有可能中斷。」 多位爆料來源聲稱,微軟銷售代表已經向零售端警告:Xbox Series 系列主機即將面臨調漲或斷貨風險。 目前 Xbox Series X 建議售價約為 600 美元,而今年微軟已曾調整定價。 Sony 早一步動作,PS5 記憶體存貨充足 相比之下,Sony 對於記憶體短缺似乎早有準備。《摩爾定律已死》提到,Sony 在 DRAM 價格低點時期就進行了大量採購,目前擁有足夠的 GDDR6 記憶體庫存,供應可撐過未來幾個月。 目前 PS5 建議售價約為 500 至 550 美元,而即將推出的 PS5 Pro 價格預估約 750 美元,兩者皆已於 2025 年內調整過售價。   延伸閱讀:微軟計劃推出 Xbox 模擬器?未來 ROG Ally 將更像「真正的 Xbox」 延伸閱讀:納德拉:遊戲產業不創新就等著被淘汰,Xbox最大對手不是PS而是抖音! 延伸閱讀:微軟總裁證實次世代 Xbox 正在開發中,強調 Ally 掌機不是「貼牌貨」  加入T客邦Facebook粉絲團記憶體價格飆漲,微軟Xbox Series X/S恐將面臨漲價?關鍵零組件成本上升,或影響Xbox主機供應。想入手的玩家動作要快,記憶體短缺可能導致斷貨危機!根據 YouTube 頻道《摩爾定律已死》(Moore’s Law is Dead)爆料,因應全球記憶體價格持續上漲,微軟可能再次調漲 Xbox Series X 與 S 主機的售價。消息指出,微軟內部已警告,關鍵零組件成本快速上升,恐影響未來供應與售價。 三星與 SK 協議推升 DRAM 價格,OpenAI 成關鍵推手 此次記憶體價格暴漲的關鍵在於,三星與 SK 海力士於 2025 年 10 月簽訂一項巨額供應協議,將大批 DRAM 提供給 OpenAI 用於 Stargate 資料中心。 根據報導,這項協議幾乎吃掉全球近 一半的 DRAM 產能,導致合約價格年增超過 170%。 對於沒有大量庫存的廠商來說,包括微軟在內,顯然都面臨供應鏈壓力。 微軟可能措手不及,漲價或缺貨成兩大風險 《摩爾定律已死》在影片中表示:「微軟完全沒提前規劃,如果你現在還想用原價買 Xbox,可能得趁早,因為不只是漲價,連供貨都有可能中斷。」 多位爆料來源聲稱,微軟銷售代表已經向零售端警告:Xbox Series 系列主機即將面臨調漲或斷貨風險。 目前 Xbox Series X 建議售價約為 600 美元,而今年微軟已曾調整定價。 Sony 早一步動作,PS5 記憶體存貨充足 相比之下,Sony 對於記憶體短缺似乎早有準備。《摩爾定律已死》提到,Sony 在 DRAM 價格低點時期就進行了大量採購,目前擁有足夠的 GDDR6 記憶體庫存,供應可撐過未來幾個月。 目前 PS5 建議售價約為 500 至 550 美元,而即將推出的 PS5 Pro 價格預估約 750 美元,兩者皆已於 2025 年內調整過售價。   延伸閱讀:微軟計劃推出 Xbox 模擬器?未來 ROG Ally 將更像「真正的 Xbox」 延伸閱讀:納德拉:遊戲產業不創新就等著被淘汰,Xbox最大對手不是PS而是抖音! 延伸閱讀:微軟總裁證實次世代 Xbox 正在開發中,強調 Ally 掌機不是「貼牌貨」  加入T客邦Facebook粉絲團

記憶體價格飆漲,傳 Xbox Series X|S 恐將再漲價!PS5 則「早有準備」

根據 YouTube 頻道《摩爾定律已死》(Moore’s Law is Dead)爆料,因應全球記憶體價格持續上漲,微軟可能再次調漲 Xbox Series X 與 S 主機的售價。消息指出,微軟內部已警告,關鍵零組件成本快速上升,恐影響未來供應與售價。

三星與 SK 協議推升 DRAM 價格,OpenAI 成關鍵推手

此次記憶體價格暴漲的關鍵在於,三星與 SK 海力士於 2025 年 10 月簽訂一項巨額供應協議,將大批 DRAM 提供給 OpenAI 用於 Stargate 資料中心。
根據報導,這項協議幾乎吃掉全球近 一半的 DRAM 產能,導致合約價格年增超過 170%

對於沒有大量庫存的廠商來說,包括微軟在內,顯然都面臨供應鏈壓力。

微軟可能措手不及,漲價或缺貨成兩大風險

《摩爾定律已死》在影片中表示:「微軟完全沒提前規劃,如果你現在還想用原價買 Xbox,可能得趁早,因為不只是漲價,連供貨都有可能中斷。」
多位爆料來源聲稱,微軟銷售代表已經向零售端警告:Xbox Series 系列主機即將面臨調漲或斷貨風險

目前 Xbox Series X 建議售價約為 600 美元,而今年微軟已曾調整定價。

Sony 早一步動作,PS5 記憶體存貨充足

相比之下,Sony 對於記憶體短缺似乎早有準備。《摩爾定律已死》提到,Sony 在 DRAM 價格低點時期就進行了大量採購,目前擁有足夠的 GDDR6 記憶體庫存,供應可撐過未來幾個月。

目前 PS5 建議售價約為 500 至 550 美元,而即將推出的 PS5 Pro 價格預估約 750 美元,兩者皆已於 2025 年內調整過售價。

  • 延伸閱讀:微軟計劃推出 Xbox 模擬器?未來 ROG Ally 將更像「真正的 Xbox」
  • 延伸閱讀:納德拉:遊戲產業不創新就等著被淘汰,Xbox最大對手不是PS而是抖音!
  • 延伸閱讀:微軟總裁證實次世代 Xbox 正在開發中,強調 Ally 掌機不是「貼牌貨」
Market Opportunity
Propy Logo
Propy Price(PRO)
$0.3738
$0.3738$0.3738
+7.94%
USD
Propy (PRO) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

21Shares Launches JitoSOL Staking ETP on Euronext for European Investors

21Shares Launches JitoSOL Staking ETP on Euronext for European Investors

21Shares launches JitoSOL staking ETP on Euronext, offering European investors regulated access to Solana staking rewards with additional yield opportunities.Read
Share
Coinstats2026/01/30 12:53
Digital Asset Infrastructure Firm Talos Raises $45M, Valuation Hits $1.5 Billion

Digital Asset Infrastructure Firm Talos Raises $45M, Valuation Hits $1.5 Billion

Robinhood, Sony and trading firms back Series B extension as institutional crypto trading platform expands into traditional asset tokenization
Share
Blockhead2026/01/30 13:30
Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Turn lengthy earnings call transcripts into one-page insights using the Financial Modeling Prep APIPhoto by Bich Tran Earnings calls are packed with insights. They tell you how a company performed, what management expects in the future, and what analysts are worried about. The challenge is that these transcripts often stretch across dozens of pages, making it tough to separate the key takeaways from the noise. With the right tools, you don’t need to spend hours reading every line. By combining the Financial Modeling Prep (FMP) API with Groq’s lightning-fast LLMs, you can transform any earnings call into a concise summary in seconds. The FMP API provides reliable access to complete transcripts, while Groq handles the heavy lifting of distilling them into clear, actionable highlights. In this article, we’ll build a Python workflow that brings these two together. You’ll see how to fetch transcripts for any stock, prepare the text, and instantly generate a one-page summary. Whether you’re tracking Apple, NVIDIA, or your favorite growth stock, the process works the same — fast, accurate, and ready whenever you are. Fetching Earnings Transcripts with FMP API The first step is to pull the raw transcript data. FMP makes this simple with dedicated endpoints for earnings calls. If you want the latest transcripts across the market, you can use the stable endpoint /stable/earning-call-transcript-latest. For a specific stock, the v3 endpoint lets you request transcripts by symbol, quarter, and year using the pattern: https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={q}&year={y}&apikey=YOUR_API_KEY here’s how you can fetch NVIDIA’s transcript for a given quarter: import requestsAPI_KEY = "your_api_key"symbol = "NVDA"quarter = 2year = 2024url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={API_KEY}"response = requests.get(url)data = response.json()# Inspect the keysprint(data.keys())# Access transcript contentif "content" in data[0]: transcript_text = data[0]["content"] print(transcript_text[:500]) # preview first 500 characters The response typically includes details like the company symbol, quarter, year, and the full transcript text. If you aren’t sure which quarter to query, the “latest transcripts” endpoint is the quickest way to always stay up to date. Cleaning and Preparing Transcript Data Raw transcripts from the API often include long paragraphs, speaker tags, and formatting artifacts. Before sending them to an LLM, it helps to organize the text into a cleaner structure. Most transcripts follow a pattern: prepared remarks from executives first, followed by a Q&A session with analysts. Separating these sections gives better control when prompting the model. In Python, you can parse the transcript and strip out unnecessary characters. A simple way is to split by markers such as “Operator” or “Question-and-Answer.” Once separated, you can create two blocks — Prepared Remarks and Q&A — that will later be summarized independently. This ensures the model handles each section within context and avoids missing important details. Here’s a small example of how you might start preparing the data: import re# Example: using the transcript_text we fetched earliertext = transcript_text# Remove extra spaces and line breaksclean_text = re.sub(r'\s+', ' ', text).strip()# Split sections (this is a heuristic; real-world transcripts vary slightly)if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1)else: prepared, qna = clean_text, ""print("Prepared Remarks Preview:\n", prepared[:500])print("\nQ&A Preview:\n", qna[:500]) With the transcript cleaned and divided, you’re ready to feed it into Groq’s LLM. Chunking may be necessary if the text is very long. A good approach is to break it into segments of a few thousand tokens, summarize each part, and then merge the summaries in a final pass. Summarizing with Groq LLM Now that the transcript is clean and split into Prepared Remarks and Q&A, we’ll use Groq to generate a crisp one-pager. The idea is simple: summarize each section separately (for focus and accuracy), then synthesize a final brief. Prompt design (concise and factual) Use a short, repeatable template that pushes for neutral, investor-ready language: You are an equity research analyst. Summarize the following earnings call sectionfor {symbol} ({quarter} {year}). Be factual and concise.Return:1) TL;DR (3–5 bullets)2) Results vs. guidance (what improved/worsened)3) Forward outlook (specific statements)4) Risks / watch-outs5) Q&A takeaways (if present)Text:<<<{section_text}>>> Python: calling Groq and getting a clean summary Groq provides an OpenAI-compatible API. Set your GROQ_API_KEY and pick a fast, high-quality model (e.g., a Llama-3.1 70B variant). We’ll write a helper to summarize any text block, then run it for both sections and merge. import osimport textwrapimport requestsGROQ_API_KEY = os.environ.get("GROQ_API_KEY") or "your_groq_api_key"GROQ_BASE_URL = "https://api.groq.com/openai/v1" # OpenAI-compatibleMODEL = "llama-3.1-70b" # choose your preferred Groq modeldef call_groq(prompt, temperature=0.2, max_tokens=1200): url = f"{GROQ_BASE_URL}/chat/completions" headers = { "Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json", } payload = { "model": MODEL, "messages": [ {"role": "system", "content": "You are a precise, neutral equity research analyst."}, {"role": "user", "content": prompt}, ], "temperature": temperature, "max_tokens": max_tokens, } r = requests.post(url, headers=headers, json=payload, timeout=60) r.raise_for_status() return r.json()["choices"][0]["message"]["content"].strip()def build_prompt(section_text, symbol, quarter, year): template = """ You are an equity research analyst. Summarize the following earnings call section for {symbol} ({quarter} {year}). Be factual and concise. Return: 1) TL;DR (3–5 bullets) 2) Results vs. guidance (what improved/worsened) 3) Forward outlook (specific statements) 4) Risks / watch-outs 5) Q&A takeaways (if present) Text: <<< {section_text} >>> """ return textwrap.dedent(template).format( symbol=symbol, quarter=quarter, year=year, section_text=section_text )def summarize_section(section_text, symbol="NVDA", quarter="Q2", year="2024"): if not section_text or section_text.strip() == "": return "(No content found for this section.)" prompt = build_prompt(section_text, symbol, quarter, year) return call_groq(prompt)# Example usage with the cleaned splits from Section 3prepared_summary = summarize_section(prepared, symbol="NVDA", quarter="Q2", year="2024")qna_summary = summarize_section(qna, symbol="NVDA", quarter="Q2", year="2024")final_one_pager = f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks — Key Points{prepared_summary}## Q&A Highlights{qna_summary}""".strip()print(final_one_pager[:1200]) # preview Tips that keep quality high: Keep temperature low (≈0.2) for factual tone. If a section is extremely long, chunk at ~5–8k tokens, summarize each chunk with the same prompt, then ask the model to merge chunk summaries into one section summary before producing the final one-pager. If you also fetched headline numbers (EPS/revenue, guidance) earlier, prepend them to the prompt as brief context to help the model anchor on the right outcomes. Building the End-to-End Pipeline At this point, we have all the building blocks: the FMP API to fetch transcripts, a cleaning step to structure the data, and Groq LLM to generate concise summaries. The final step is to connect everything into a single workflow that can take any ticker and return a one-page earnings call summary. The flow looks like this: Input a stock ticker (for example, NVDA). Use FMP to fetch the latest transcript. Clean and split the text into Prepared Remarks and Q&A. Send each section to Groq for summarization. Merge the outputs into a neatly formatted earnings one-pager. Here’s how it comes together in Python: def summarize_earnings_call(symbol, quarter, year, api_key, groq_key): # Step 1: Fetch transcript from FMP url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={api_key}" resp = requests.get(url) resp.raise_for_status() data = resp.json() if not data or "content" not in data[0]: return f"No transcript found for {symbol} {quarter} {year}" text = data[0]["content"] # Step 2: Clean and split clean_text = re.sub(r'\s+', ' ', text).strip() if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1) else: prepared, qna = clean_text, "" # Step 3: Summarize with Groq prepared_summary = summarize_section(prepared, symbol, quarter, year) qna_summary = summarize_section(qna, symbol, quarter, year) # Step 4: Merge into final one-pager return f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks{prepared_summary}## Q&A Highlights{qna_summary}""".strip()# Example runprint(summarize_earnings_call("NVDA", 2, 2024, API_KEY, GROQ_API_KEY)) With this setup, generating a summary becomes as simple as calling one function with a ticker and date. You can run it inside a notebook, integrate it into a research workflow, or even schedule it to trigger after each new earnings release. Free Stock Market API and Financial Statements API... Conclusion Earnings calls no longer need to feel overwhelming. With the Financial Modeling Prep API, you can instantly access any company’s transcript, and with Groq LLM, you can turn that raw text into a sharp, actionable summary in seconds. This pipeline saves hours of reading and ensures you never miss the key results, guidance, or risks hidden in lengthy remarks. Whether you track tech giants like NVIDIA or smaller growth stocks, the process is the same — fast, reliable, and powered by the flexibility of FMP’s data. Summarize Any Stock’s Earnings Call in Seconds Using FMP API was originally published in Coinmonks on Medium, where people are continuing the conversation by highlighting and responding to this story
Share
Medium2025/09/18 14:40