Reviews state-of-the-art MLLMs. Highlights the challenge of expanding current models beyond the simple one-to-one image text relationship.Reviews state-of-the-art MLLMs. Highlights the challenge of expanding current models beyond the simple one-to-one image text relationship.

MLLM Adapters: Review of VPGs and Multimodal Fusion

2025/11/13 01:00

Abstract and 1 Introduction

  1. Related Work

    2.1. Multimodal Learning

    2.2. Multiple Instance Learning

  2. Methodology

    3.1. Preliminaries and Notations

    3.2. Relations between Attention-based VPG and MIL

    3.3. MIVPG for Multiple Visual Inputs

    3.4. Unveiling Instance Correlation in MIVPG for Enhanced Multi-instance Scenarios

  3. Experiments and 4.1. General Setup

    4.2. Scenario 1: Samples with Single Image

    4.3. Scenario 2: Samples with Multiple Images, with Each Image as a General Embedding

    4.4. Scenario 3: Samples with Multiple Images, with Each Image Having Multiple Patches to be Considered and 4.5. Case Study

  4. Conclusion and References

\ Supplementary Material

A. Detailed Architecture of QFormer

B. Proof of Proposition

C. More Experiments

2. Related Work

2.1. Multimodal Learning

Recently, various vision-language models (VLMs) have been proposed to enhance the fusion of text and images. For example, TCL [42] employed triplet contrastive learning to simultaneously learn from text and images. Many state-ofthe-art MLLMs have also emerged, with one major distinction lying in the design of VPGs. For instance, FROMAGe [18] and LLaVA [24] employ a straightforward linear projection as their VPGs. On the other hand, Flamingo [2] introduces the novel use of the Perceiver Resampler, incorporating cross attention and learnable query embeddings. BLIP2 [22] innovatively employs the QFormer to improve image-text alignment. Meanwhile, MiniGPT-4 [48] integrates a frozen QFormer with additional learnable layers for enhanced performance.

\ While successful in diverse tasks, current multimodal models are primarily designed under the assumption of a one-to-one relationship between texts and image inputs. In reality, the relationship between text and images can be one-to-many or many-to-many. Effectively applying multimodal models in such scenarios poses an open challenge.

\

:::info Authors:

(1) Wenliang Zhong, The University of Texas at Arlington (wxz9204@mavs.uta.edu);

(2) Wenyi Wu, Amazon (wenyiwu@amazon.com);

(3) Qi Li, Amazon (qlimz@amazon.com);

(4) Rob Barton, Amazon (rab@amazon.com);

(5) Boxin Du, Amazon (boxin@amazon.com);

(6) Shioulin Sam, Amazon (shioulin@amazon.com);

(7) Karim Bouyarmane, Amazon (bouykari@amazon.com);

(8) Ismail Tutar, Amazon (ismailt@amazon.com);

(9) Junzhou Huang, The University of Texas at Arlington (jzhuang@uta.edu).

:::


:::info This paper is available on arxiv under CC by 4.0 Deed (Attribution 4.0 International) license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like