The post Ray Enhances Scheduling with New Label Selectors appeared on BitcoinEthereumNews.com. Terrill Dicki Nov 01, 2025 13:41 Ray introduces label selectors, enhancing scheduling capabilities for developers, allowing more precise workload placement on nodes. The feature is a collaboration with Google Kubernetes Engine. Ray, the distributed computing framework, has introduced a significant update with the release of label selectors, a feature aimed at enhancing scheduling flexibility for developers. This new capability allows for more precise placement of workloads on the appropriate nodes, according to a recent announcement by Anyscale. Enhancing Workload Placement The introduction of label selectors comes as part of a collaboration with the Google Kubernetes Engine team. Available in Ray version 2.49, the new feature is integrated across the Ray Dashboard, KubeRay, and Anyscale’s AI compute platform. It allows developers to assign specific labels to nodes in a Ray cluster, such as cpu-family=intel or market-type=spot, which can streamline the process of scheduling tasks, actors, or placement groups on specified nodes. Addressing Previous Limitations Previously, developers faced challenges when trying to schedule tasks on specific nodes, often resorting to workarounds that conflated resource quantities with placement constraints. The new label selectors address these limitations by allowing more flexible expression of scheduling requirements, including exact matches, any-of conditions, and negative matches, such as avoiding GPU nodes or specifying regions like us-west1-a or us-west1-b. Integration with Kubernetes Ray’s label selectors draw inspiration from Kubernetes labels and selectors, enhancing interoperability between the two systems. This development is part of ongoing efforts to integrate Ray more closely with Kubernetes, enabling more advanced use cases through familiar APIs and semantics. Practical Applications With label selectors, developers can achieve various scheduling objectives, such as pinning tasks to specific nodes, selecting CPU-only placements, targeting specific accelerators, and keeping workloads within certain regions or zones. The feature also supports both static… The post Ray Enhances Scheduling with New Label Selectors appeared on BitcoinEthereumNews.com. Terrill Dicki Nov 01, 2025 13:41 Ray introduces label selectors, enhancing scheduling capabilities for developers, allowing more precise workload placement on nodes. The feature is a collaboration with Google Kubernetes Engine. Ray, the distributed computing framework, has introduced a significant update with the release of label selectors, a feature aimed at enhancing scheduling flexibility for developers. This new capability allows for more precise placement of workloads on the appropriate nodes, according to a recent announcement by Anyscale. Enhancing Workload Placement The introduction of label selectors comes as part of a collaboration with the Google Kubernetes Engine team. Available in Ray version 2.49, the new feature is integrated across the Ray Dashboard, KubeRay, and Anyscale’s AI compute platform. It allows developers to assign specific labels to nodes in a Ray cluster, such as cpu-family=intel or market-type=spot, which can streamline the process of scheduling tasks, actors, or placement groups on specified nodes. Addressing Previous Limitations Previously, developers faced challenges when trying to schedule tasks on specific nodes, often resorting to workarounds that conflated resource quantities with placement constraints. The new label selectors address these limitations by allowing more flexible expression of scheduling requirements, including exact matches, any-of conditions, and negative matches, such as avoiding GPU nodes or specifying regions like us-west1-a or us-west1-b. Integration with Kubernetes Ray’s label selectors draw inspiration from Kubernetes labels and selectors, enhancing interoperability between the two systems. This development is part of ongoing efforts to integrate Ray more closely with Kubernetes, enabling more advanced use cases through familiar APIs and semantics. Practical Applications With label selectors, developers can achieve various scheduling objectives, such as pinning tasks to specific nodes, selecting CPU-only placements, targeting specific accelerators, and keeping workloads within certain regions or zones. The feature also supports both static…

Ray Enhances Scheduling with New Label Selectors

2025/11/02 10:24


Terrill Dicki
Nov 01, 2025 13:41

Ray introduces label selectors, enhancing scheduling capabilities for developers, allowing more precise workload placement on nodes. The feature is a collaboration with Google Kubernetes Engine.

Ray, the distributed computing framework, has introduced a significant update with the release of label selectors, a feature aimed at enhancing scheduling flexibility for developers. This new capability allows for more precise placement of workloads on the appropriate nodes, according to a recent announcement by Anyscale.

Enhancing Workload Placement

The introduction of label selectors comes as part of a collaboration with the Google Kubernetes Engine team. Available in Ray version 2.49, the new feature is integrated across the Ray Dashboard, KubeRay, and Anyscale’s AI compute platform. It allows developers to assign specific labels to nodes in a Ray cluster, such as cpu-family=intel or market-type=spot, which can streamline the process of scheduling tasks, actors, or placement groups on specified nodes.

Addressing Previous Limitations

Previously, developers faced challenges when trying to schedule tasks on specific nodes, often resorting to workarounds that conflated resource quantities with placement constraints. The new label selectors address these limitations by allowing more flexible expression of scheduling requirements, including exact matches, any-of conditions, and negative matches, such as avoiding GPU nodes or specifying regions like us-west1-a or us-west1-b.

Integration with Kubernetes

Ray’s label selectors draw inspiration from Kubernetes labels and selectors, enhancing interoperability between the two systems. This development is part of ongoing efforts to integrate Ray more closely with Kubernetes, enabling more advanced use cases through familiar APIs and semantics.

Practical Applications

With label selectors, developers can achieve various scheduling objectives, such as pinning tasks to specific nodes, selecting CPU-only placements, targeting specific accelerators, and keeping workloads within certain regions or zones. The feature also supports both static and autoscaling clusters, with Anyscale’s autoscaler considering resource shapes and label selectors to scale worker groups appropriately.

Future Developments

Looking ahead, Ray plans to enhance the label selector feature with additional capabilities such as fallback label selectors, library support for common scheduling patterns, and improved interoperability with Kubernetes. These developments aim to further simplify workload scheduling and enhance the overall user experience.

For more detailed instructions and API details, developers can refer to the Anyscale and Ray guides.

Image source: Shutterstock

Source: https://blockchain.news/news/ray-enhances-scheduling-with-new-label-selectors

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.
Share Insights

You May Also Like

Crypto Whales Watch Closely as LivLive ($LIVE) Overtakes Avalanche (AVAX) and TRON (TRX) Among Top Crypto Coins Right Now

Crypto Whales Watch Closely as LivLive ($LIVE) Overtakes Avalanche (AVAX) and TRON (TRX) Among Top Crypto Coins Right Now

The post Crypto Whales Watch Closely as LivLive ($LIVE) Overtakes Avalanche (AVAX) and TRON (TRX) Among Top Crypto Coins Right Now appeared on BitcoinEthereumNews.com. What if daily activities could turn into income streams? Imagine earning while reviewing a restaurant, walking to work, or engaging with local communities. LivLive ($LIVE) is making that reality possible, turning everyday actions into verified blockchain rewards and positioning itself as one of the top crypto to invest in this year. While Avalanche (AVAX) is making technical strides and TRON (TRX) continues to strengthen its global network, LivLive is stealing the spotlight with its explosive presale momentum and real-world earning potential. This article will cover the developments and updates of all coins including LivLive, Avalanche, and TRON. LivLive ($LIVE): Direct Creator Monetization and Dual Referral System Power the Next Big Crypto LivLive has introduced a game-changing model that empowers creators and users alike. Its Direct Creator Monetization and Dual Referral System gives influencers recurring commissions through multi-level referrals. Each participant gets a personal referral link and a dashboard to monitor network growth, token earnings, and invite performance in real time. This model builds community-driven expansion and rewards genuine engagement. The more creators and users join, the stronger the ecosystem becomes. It’s not speculation but participation that drives this system, making LivLive one of the best crypto to buy for those seeking sustained returns through network growth. The dual referral structure ensures everyone benefits when others succeed. This community-first design attracts crypto whales and everyday users alike, offering a fair and transparent income mechanism. LivLive has successfully transformed what traditional referral programs failed to achieve, creating a living economy powered by trust, proof, and scalability. Investors are drawn to how seamlessly the platform combines entertainment, engagement, and real earning potential into one unified ecosystem. Secure and Transparent Tokenomics: Why LivLive Leads the Top Crypto to Buy in 2025 Trust is the foundation of any successful blockchain project, and LivLive builds it…
Share
BitcoinEthereumNews2025/11/03 00:48